109 research outputs found

    Amyotrophic lateral sclerosis-motor neuron disease, monoclonal gammopathy, hyperparathyroidism, and B12 deficiency: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Amyotrophic lateral sclerosis (the most common form of motor neuron disease) is a progressive and devastating disease involving both lower and upper motor neurons, typically following a relentless path towards death. Given the gravity of this diagnosis, all efforts must be made by the clinician to exclude alternative and more treatable entities. Frequent serology testing involves searching for treatable disorders, including vitamin B12 deficiency, parathyroid anomalies, and monoclonal gammopathies.</p> <p>Case presentation</p> <p>We present the case of a 78-year-old Caucasian man with all three of the aforementioned commonly searched for disorders during an investigation for amyotrophic lateral sclerosis.</p> <p>Conclusions</p> <p>The clinical utility of these common tests and what they ultimately mean in patients with amyotrophic lateral sclerosis is discussed, along with a review of the literature.</p

    Extensive myocardial infiltration by hemopoietic precursors in a patient with myelodysplastic syndrome

    Get PDF
    BACKGROUND: Although myocardial infiltration with leukemic blasts is a known finding in patients with acute leukemia, this phenomenon in myelodysplasia is not reported in the literature. Cardiac symptoms in patients with myelodysplasia are often due to anemia and may be due to iron overload and side effects of therapy. CASE PRESENTATION: Herein we report the first case of neoplastic infiltration of the heart with associated myocardial necrosis in a patient with myelodysplasia. It was associated with unicellular and multifocal geographic areas of necrosis in the left ventricle and the interventricular septum. It is likely that cardiac compromise in our patient was due to a combination of restrictive cardiomyopathy due to leukemic infiltration, concomitant anemia, cardiac dilatation, conduction blocks and myocardial necrosis. Myocardial necrosis was most likely due to a combination of ischemic damage secondary to anemia and prolonged hypotension and extensive leukemic infiltration. Markedly rapid decrease in ejection fraction from 66% to 33% also suggests the role of ischemia, since leukemic infiltration is not expected to cause this degree of systolic dysfunction over a 24-hour period. The diagnosis was not suspected during life due to concomitant signs and symptoms of anemia, pulmonary infections, and pericardial and pleural effusions. The patient succumbed to cardiac failure. CONCLUSION: Hemopoietic cell infiltration was not considered in the differential diagnosis and contributed to this patient's morbidity and mortality. This case highlights the clinical importance of considering myocardial infiltration in patients with myelodysplasia and cardiac symptoms

    Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses: A Multicenter Study Using Intracoronary Pressure and Flow

    Get PDF
    Background: Patients with severe aortic stenosis (AS) often have coronary artery disease. Both the aortic valve and the coronary disease influence the blood flow to the myocardium and its ability to respond to stress; leading to exertional symptoms. In this study, we aim to quantify the effect of severe AS on the coronary microcirculation and determine if this is influenced by any concomitant coronary disease. We then compare this to the effect of coronary stenoses on the coronary microcirculation. Methods: Group 1: 55 patients with severe AS and intermediate coronary stenoses treated with transcatheter aortic valve implantation (TAVI) were included. Group 2: 85 patients with intermediate coronary stenoses and no AS treated with percutaneous coronary intervention were included. Coronary pressure and flow were measured at rest and during hyperemia in both groups, before and after TAVI (group 1) and before and after percutaneous coronary intervention (group 2). Results: Microvascular resistance over the wave-free period of diastole increased significantly post-TAVI (pre-TAVI, 2.71±1.4 mm Hg·cm·s−1 versus post-TAVI 3.04±1.6 mm Hg·cm·s−1 [P=0.03]). Microvascular reserve over the wave-free period of diastole significantly improved post-TAVI (pre-TAVI 1.88±1.0 versus post-TAVI 2.09±0.8 [P=0.003]); this was independent of the severity of the underlying coronary stenosis. The change in microvascular resistance post-TAVI was equivalent to that produced by stenting a coronary lesion with an instantaneous wave-free ratio of ≤0.74. Conclusions: TAVI improves microcirculatory function regardless of the severity of underlying coronary disease. TAVI for severe AS produces a coronary hemodynamic improvement equivalent to the hemodynamic benefit of stenting coronary stenoses with instantaneous wave-free ratio values <0.74. Future trials of physiology-guided revascularization in severe AS may consider using this value to guide treatment of concomitant coronary artery disease

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Diacylglycerol Kinase β Knockout Mice Exhibit Lithium-Sensitive Behavioral Abnormalities

    Get PDF
    BACKGROUND: Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed behavioral tests using DGKβ knockout (KO) mice to investigate the effects of DGKβ deficits on psychomotor behavior. DGKβ KO mice exhibited some behavioral abnormalities, such as hyperactivity, reduced anxiety, and reduced depression. Additionally, hyperactivity and reduced anxiety were attenuated by the administration of the mood stabilizer, lithium, but not haloperidol, diazepam, or imipramine. Moreover, DGKβ KO mice showed impairment in Akt-glycogen synthesis kinase (GSK) 3β signaling and cortical spine formation. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice exhibit lithium-sensitive behavioral abnormalities that are, at least in part, due to the impairment of Akt-GSK3β signaling and cortical spine formation

    Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms

    Get PDF
    We examined the morphological, biochemical and molecular outcome of a nonspecific sulfhydryl reduction in cells, obtained by supplementation of N-acetyl-L-cysteine (NAC) in a 0.1-10 mM concentration range. In human normal primary keratinocytes and in colon and ovary carcinoma cells we obtained evidences for: (i) a dose-dependent inhibition of proliferation without toxicity or apoptosis; (ii) a transition from a proliferative mesenchymal morphology to cell-specific differentiated structures; (iii) a noticeable increase in cell-cell and cell-substratum junctions; (iv) a relocation of the oncogenic beta-catenin at the cell-cell junctions; (v) inhibition of microtubules aggregation; (vi) upregulation of differentiation-related genes including p53, heat shock protein 27 gene, N-myc downstream-regulated gene 1, E-cadherin, and downregulation of cyclooxygenase-2; (vii) inhibition of c-Src tyrosine kinase. In conclusion, a thiol reduction devoid of toxicity as that operated by NAC apparently leads to terminal differentiation of normal and cancer cells through a pleiade of converging mechanisms, many of which are targets of the recently developed differentiation therapy

    Trihydrophobin 1 Phosphorylation by c-Src Regulates MAPK/ERK Signaling and Cell Migration

    Get PDF
    c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src

    Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression

    Get PDF
    Focal adhesion kinase (FAK) is considered intimately involved in cancer progression. Our previous research has demonstrated that overexpression of FAK is an early and frequent event in squamous cell carcinomas of the supraglottic larynx, and it is associated with the presence of metastases in cervical lymph nodes. The purpose of this study was to examine the functional role of FAK in the progression of head and neck squamous cell carcinomas (HNSCC). To this end, expression of FAK-related nonkinase (FRNK) or small interfering RNA (siRNA) against FAK was used to disrupt the FAK-induced signal transduction pathways in the HNSCC-derived SCC40 and SCC38 cell lines. Similar phenotypic effects were observed with the two methodological approaches in both cell lines. Decreased cell attachment, motility and invasion were induced by FRNK and FAK siRNA, whereas cell proliferation was not impaired. In addition, increased cell invasion was observed upon FAK overexpression in SCC cells. FRNK expression resulted in a downregulation of MMP-2 and MMP-9 expression. Interestingly, MMP-2 overexpression in FRNK-expressing cells rescued FRNK inhibition of cell invasion. This is the first demonstration of a direct rescue of impaired cell invasion by the re-expression of MMP-2 in a tumour cell type with decreased expression of functional FAK. Collectively, these data reported here support the conclusion that FAK enhances invasion of HNSCC by promoting both increased cell motility and MMP-2 production, thus providing new insights into possible therapeutic intervention strategies

    Versican G3 Promotes Mouse Mammary Tumor Cell Growth, Migration, and Metastasis by Influencing EGF Receptor Signaling

    Get PDF
    Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis

    T Cell-Dependence of Lassa Fever Pathogenesis

    Get PDF
    Lassa virus (LASV), the causative agent of Lassa fever (LF), is endemic in West Africa, accounting for substantial morbidity and mortality. In spite of ongoing research efforts, LF pathogenesis and mechanisms of LASV immune control remain poorly understood. While normal laboratory mice are resistant to LASV, we report that mice expressing humanized instead of murine MHC class I (MHC-I) failed to control LASV infection and develop severe LF. Infection of MHC-I knockout mice confirmed a key role for MHC-I-restricted T cell responses in controlling LASV. Intriguingly we found that T cell depletion in LASV-infected HHD mice prevented disease, irrespective of high-level viremia. Widespread activation of monocyte/macrophage lineage cells, manifest through inducible NO synthase expression, and elevated IL-12p40 serum levels indicated a systemic inflammatory condition. The absence of extensive monocyte/macrophage activation in T cell-depleted mice suggested that T cell responses contribute to deleterious innate inflammatory reactions and LF pathogenesis. Our observations in mice indicate a dual role for T cells, not only protecting from LASV, but also enhancing LF pathogenesis. The possibility of T cell-driven enhancement and immunopathogenesis should be given consideration in future LF vaccine development
    • …
    corecore